Seismic profile denoising based on common-reflection-point gathers using convolution neural networks
نویسندگان
چکیده
Abstract With the development of seismic surveys and decline shallow petroleum resources, high resolution signal-to-noise ratio have become more important in processing. To improve quality data, stationary-phase migration based on dip-angle gathers can be used to separate reflected waves noise. However, this method is very computationally intensive heavily dependent expert experience. Neural networks currently powerful adaptive capabilities great potential replace artificial Certain applications convolution neural (CNNs) stack profiles lead a loss amplitude information. Therefore, we developed CNNs for noise reduction common-reflection-point (CRP) gathers. We CRP as labels conventional prestack time inputs. In addition, analyzed properties demonstrated network optimization process results. The results showed that our methods achieve fast reliable denoising produce high-quality contain true Furthermore, predicted further processing steps, such normal moveout correction variation with offset.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Automating prestack migration analysis using common focal point gathers
CFP technology (Berkhout, 1996a,b) addresses these limitations in a novel way. By breaking the model determination process into two simpler, more easily solved problems, those of operator estimation and macro model estimation, the final solution will typically be more accurate. Moreover, by providing rapid local convergence to the correct travel-time operators, migration analysis can be automat...
متن کاملOffset and angle-domain common image-point gathers for shot-profile migration
Prestack depth migration of shot profiles by downward continuation is a practical imaging algorithm that is especially cost-effective for sparse-shot wide-azimuth geometries. The interpretation of offset as the displacement between the downward-propagating (shot) wavefield and upward-propagating (receiver) wavefield enables us to extract offset-domain common imagepoint (CIP) gathers during shot...
متن کاملExtended common-image-point gathers for anisotropic wave-equation migration
Introduction In regions characterized by complex subsurface structure, wave-equation depth migration is a powerful tool for accurately imaging the earth’s interior. The quality of the final image greatly depends on the quality of the model which includes anisotropy parameters (Gray et al., 2001). In particular, it is important to construct subsurface velocity models using techniques that are co...
متن کاملImage-domain wavefield tomography with extended common-image-point gathers
Waveform inversion is a velocity-model-building technique based on full waveforms as the input and seismic wavefields as the information carrier. Conventional waveform inversion is implemented in the data domain. However, similar techniques referred to as image-domain wavefield tomography can be formulated in the image domain and use a seismic image as the input and seismic wavefields as the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysics and Engineering
سال: 2023
ISSN: ['1742-2140', '1742-2132']
DOI: https://doi.org/10.1093/jge/gxad008